No functionally relevant mechanical effects of epimuscular myofascial connections between rat ankle plantar flexors.
نویسندگان
چکیده
Triceps surae muscles are mechanically connected by the shared Achilles tendon and by epimuscular myofascial connections. We aimed to assess the effects of proximal lengthening of gastrocnemius and plantaris muscles, imposed by changes in knee angle, on the magnitude and direction of the 3D ankle moment exerted by the soleus muscle and the mechanical interaction between ankle plantar flexor muscles during co-activation of gastrocnemius muscle, in the rat (N=9). Ankle angle was kept constant (90 deg), whereas knee angle was varied between 60 deg and 130 deg. At each knee angle, the soleus muscle was excited individually as well as simultaneously with the gastrocnemius muscle (SO+GA). The mathematical sum of individual soleus and gastrocnemius ankle moments was compared with the ankle moment exerted by SO+GA to assess nonlinear summation. Knee angle did not affect the magnitude of the soleus ankle moment (P=0.695). Moment directions in the transverse (P=0.050) and frontal (P=0.008) planes were affected by knee angle, but dissection indicated that this was not caused by length changes of the two-joint synergistic muscles. Nonlinear summation was found in the magnitude (-1.4 ± 1.9%, mean ± s.d., P<0.001) and in the frontal plane vector direction of the ankle moment (0.13 ± 0.23 deg, P=0.003); however, the extent did not change with knee angle. Although contraction of SO+GA increased the length of the Achilles tendon compared with its length at rest, this was not dependent on the knee angle (P=0.649). Despite the fact that intermuscular force transmission per se cannot be excluded, we conclude that, in vivo, the mechanical effects of epimuscular myofascial connections between rat ankle plantar flexors are not functionally relevant.
منابع مشابه
Synergistic Co-activation Increases the Extent of Mechanical Interaction between Rat Ankle Plantar-Flexors
Force transmission between rat ankle plantar-flexors has been found for physiological muscle lengths and relative positions, but only with all muscles maximally activated. The aims of this study were to assess intermuscular mechanical interactions between ankle plantar-flexors during (i) fully passive conditions, (ii) excitation of soleus (SO), (iii) excitation of lateral gastrocnemius (LG), an...
متن کاملA lumped stiffness model of intermuscular and extramuscular myofascial pathways of force transmission
Mechanical behavior of skeletal muscles is commonly modeled under the assumption of mechanical independence between individual muscles within a muscle group. Epimuscular myofascial force transmission via the connective tissue network surrounding a muscle challenges this assumption as it alters the force distributed to the tendons of individual muscles. This study aimed to derive a lumped estima...
متن کاملSignificant mechanical interactions at physiological lengths and relative positions of rat plantar flexors.
In situ studies involving supraphysiological muscle lengths and relative positions have shown that connective tissue linkages connecting adjacent muscles can transmit substantial forces, but the physiological significance is still subject to debate. The present study investigates effects of such epimuscular myofascial force transmission in the rat calf muscles. Unlike previous approaches, we qu...
متن کاملEffects of epimuscular myofascial force transmission on sarcomere length of passive muscles in the rat hindlimb.
Results from imaging studies and finite element models suggest epimuscular myofascial effects on sarcomere lengths in series within muscle fibers. However, experimental evidence is lacking. We evaluated epimuscular myofascial effects on (1) muscle belly, fiber, and mean sarcomere length and (2) sarcomere length distribution within passive fibers of the rat tibialis anterior (TA) and soleus (SO)...
متن کاملSubstantial effects of epimuscular myofascial force transmission on muscular mechanics have major implications on spastic muscle and remedial surgery.
The specific aim of this paper is to review the effects of epimuscular myofascial force transmission on muscular mechanics and present some new results on finite element modeling of non-isolated aponeurotomized muscle in order to discuss the dependency of mechanics of spastic muscle, as well as surgery for restoration of function on such force transmission. The etiology of the effects of spasti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 218 Pt 18 شماره
صفحات -
تاریخ انتشار 2015